-
Neural Network-Based Self-Tuning PID Control for Underwater VehiclesAI, DataScience 2022. 2. 22. 10:00728x90
논문 리뷰
이 포스트의 모든 저작권은 원작자에게 있습니다.
Sensors 2016
by Rodrigo Hernández-Alvarado 1,*,†,‡,Luis Govinda García-Valdovinos 1,‡,Tomás Salgado-Jiménez 1,‡,Alfonso Gómez-Espinosa 2,‡ORCID and Fernando Fonseca-Navarro 1,‡
subject:
Comparison between Conventional PID-like controller and Auto-tune PID-like controller based on Neural Networks (NN)
keyword:
neural networks
auto-tuning PID
ROV(Remotely Operated Vehicles) control
disturbancesresult:
Auto-tune PID-like controller based on Neural Networks attained the best performance with less energy.
background knowledge:
Neural Network
PID
Model
Block diagram of an auto-tuned PID with artificial NN control Block diagram of the implemented backpropagation NN parameter
- u(n), u(n-1)
- reference inputs
- desired trajectory
- y(n), y(n-1)
- reference outputs
- real trajectory
- C(n), C(n-1)
- control signals
- wji
- weights of the hidden layer
- vji
- weights of the output layer.
728x90'AI, DataScience' 카테고리의 다른 글
[docker] 내가 자주 쓰는 docker 명령어 모음 (0) 2022.03.25 [docker] GPU 서버에 jupyter notebook 환경 구축하기 (0) 2022.03.23 [PyTorch] PyTorch를 공부하는 이유 (0) 2022.02.16 [딥러닝] TensorFlow, Keras, PyTorch 특징 비교, 장단점 (0) 2022.02.15 [PyTorch] 단순 선형 회귀, 다중 선형 회귀 연습 (0) 2022.02.14 - u(n), u(n-1)