AI, DataScience

Neural Network-Based Self-Tuning PID Control for Underwater Vehicles

이무기뱀술 2022. 2. 22. 10:00
728x90

논문 리뷰

이 포스트의 모든 저작권은 원작자에게 있습니다.

 

Sensors 2016

by Rodrigo Hernández-Alvarado 1,*,†,‡,Luis Govinda García-Valdovinos 1,‡,Tomás Salgado-Jiménez 1,‡,Alfonso Gómez-Espinosa 2,‡ORCID and Fernando Fonseca-Navarro 1,‡


subject:

Comparison between Conventional PID-like controller and Auto-tune PID-like controller based on Neural Networks (NN)

 

keyword:

neural networks
auto-tuning PID
ROV(Remotely Operated Vehicles) control
disturbances

 

result:

Auto-tune PID-like controller based on Neural Networks attained the best performance with less energy.

 

background knowledge:

Neural Network

PID

 

Model

Block diagram of an auto-tuned PID with artificial NN control
Block diagram of the implemented backpropagation NN

parameter

  • u(n), u(n-1)
    • reference inputs
    • desired trajectory
  • y(n), y(n-1)
    • reference outputs
    • real trajectory
  • C(n), C(n-1)
    • control signals
  • wji
    • weights of the hidden layer
  • vji
    • weights of the output layer.
728x90